Abstract

Irrigation produces a significant increase in crop yields and a noticeable reduction in annual yield variability. These two factors make irrigation an attractive economic practice through direct impact on the profitability of crops (positive in levels and negative in dispersion). When irrigation supplements natural precipitation on rain-fed summer crops, this effect is even more evident. The typical economic feasibility analysis of supplemented irrigation is from a financial point of view. However, these methodologies fail to consider the benefits accrued from income stability. In this study, we monetarily quantify these benefits using a Prospect Theory approach. We compare the certainty equivalent of the stochastic profit flow of a farmer applying supplemented irrigation to a crop rotation to that of a farmer who does not use irrigation and crops in a rain-fed system, using a cumulative Prospect Theory utility function in both cases. Our application evaluates summer crops in Uruguay. We find that the farmer values income stability from irrigation (i.e., lower volatility) between 20 to 32% of the total benefit he assigns to the use of irrigation. We build scenarios with different production orientation of the operation, soil aptitude, distance to the port, and attitudes towards risk, and in all cases, farmers attribute a considerably high value to the lower volatility. These results contribute to the efforts and policies seeking to promote irrigation adoption.

Keywords: irrigation, volatility, Uruguay.
1. Introduction

The introduction of (supplemented) irrigation to summer crops such as soybeans, corn, sorghum, and artificial pastures, produce a significant increase in yields and an important reduction in their annual variability. Supplemented irrigation means that water is applied in specific moments of the growing period to supplement natural rainfall. The combination of these factors makes the introduction of supplemented irrigation an attractive practice by having direct impact on the economic profitability of the crops (positive in levels and negative in dispersion). Moreover, irrigation may increase the resilience of the production systems against weather changes, and thus, considered a measure of adaptation to variability and climate change.

Beyond the benefits of intensification and income stability, irrigation provides environmental sustainability advantages. Irrigation involves a higher use of chemical inputs in absolute terms, which is generally associated to producing higher losses from the field to the environment. But simultaneously, irrigation allows for a more adjusted use of inputs relative to the actual crop requirements and to better exploit the crop production potential. This impacts on input use efficiency and reduces the losses to the environment per unit of input used. Thus, the final effect depends on the relative weight of these two factors. As a consequence of this, firstly, it is essential that irrigation be accompanied by best management practices. Secondly, given the reduced yield variability, the losses to the environment (whether higher or lower) are expected to have a lower dispersion, which constitutes an important factor for environmental management.

The income variability generated by the exposure of production systems to climate events creates uncertainty that negatively affects farmers’ investment and production decisions. Thus, production practices that make farmers more resilient to variability and climate change have the double effect of being an adaptation tool as well as
fostering a good business environment. The lower dispersion in the annual economic profitability induced by irrigation implies a positive impact on the farmer’s expectations. This promotes an economic environment that encourages investment, the adoption of technology and innovation, and an overall increase in production.

Typical evaluations of supplemented irrigation analyze its adoption from a financial point of view, or to what extent does the net income increase after adoption. The two most common approaches are a net present value approach and an internal rate of return approach (Rosas et al. 2014; Tavakoli et al. 2010; Yuan, Fengmin and Puhai 2003; Marra and Woods 1990).

We argue that these approaches fail to provide a complete evaluation of the benefits of supplemented irrigation because they do not account for the reduced variability in expected income; they only consider the increase in average income. Stability of profits provides value or utility to the farmer, and if not considered, the benefits of irrigation adoption will be underestimated. Therefore, we propose an approach in which the farmer’s decision process regarding the adoption of irrigation considers both the higher average income flow and lower income volatility. Our method is based on cumulative Prospect Theory which is a model of decision-making under risk that incorporates features of the decision process such as risk aversion, loss aversion, a reference point for gains and losses, and a system for weighing the probabilities according to the individual’s perception of gains and losses (Kahneman and Tsversky, 1992).

Furthermore, the agricultural economics literature has paid little attention to these types of evaluations (i.e., accounting for higher mean and lower volatility in irrigation production). Two exceptions are Apland et al. (1980) and Pandey (1990). Apland et al. (1980) evaluate the economic feasibility of supplemented irrigation in the U.S. Corn Belt, with data from 1968 to 1975. They use a case study approach where they
analyze the impact of risk aversion on the demand for supplemented irrigation by firms. Pandey (1990) uses stochastic dominance to identify risk-efficient irrigation schedules for winter wheat in central India, using the output of a crop simulation model. He also estimates the benefits to farmers due to risk reduction.

In a recent study for corn in Uruguay, Gelós (2016) evaluates the decision to implement supplemented irrigation and considers the differential in both returns and risk. He employs an expected utility approach and uses the certainty equivalent to conclude about the most beneficial technology in different scenarios.

Beyond the use of cumulative Prospect Theory, our study differs from other evaluations of supplemented irrigation in that we evaluate the adoption of the technology in the context of crop rotations rather than for a specific individual crop. Crop rotations are planned for at least two years, may include double-cropping within the same year, and are designed so that they result in better agronomic and environmental performance than deciding the crop every year. Furthermore, this is the standard decision process carried out by farmers.

We provide an application to supplemented irrigation of summer crops in Uruguay. Irrigated area in Uruguay has been steadily increasing in recent decades, from 52 thousand hectares in 1970 to more than 240 thousand in 2011 (MGAP-DIEA 2011); traditionally, rice has been the main irrigated crop. Furthermore, irrigated agriculture has been more dynamic in recent years, mainly driven by other summer crops such as soybean, corn, sorghum and artificial pastures, whose area augmented 34% in the inter-census period between 2000 and 2011. We generate scenarios representative of typical production conditions observed in Uruguay by changing the production orientation of the operation (crop only or crop and livestock), the soil aptitude, and the distance to the port, and each scenario is characterized by a crop rotation (both with and without irrigation) that are suitable for these conditions.
Given the limited literature on this topic, we believe our work fills an important gap by providing updated evidence using a different, although well-established approach. Prospect Theory was developed more than 30 years ago, but there are still relatively few applications in economics (Barberis 2013). To our knowledge, this is the first application of Prospect Theory to the adoption of irrigation practices.

Finally, this paper has important policy implications, because it can be used as an input in private and public initiatives that promote supplemented irrigation in summer crops, as it provides empirical evidence of the economic benefits of its adoption.

The next section presents the methodology employed, followed by the data section. Then, results are shown and discussed. The paper finishes with some concluding remarks.

2. Methodology

The objective of this study is to compare the value of the utility derived from the profits of an irrigated crop production versus the profits of a rain-fed crop production. The utility to the farmer is computed using the concept of cumulative Prospect Theory.

Prospect Theory is a model of decision-making under risk which arises partly from the critics to the Expected Utility Theory, as several experimental studies have shown that the latter is systematically violated when people choose among risky gambles. Prospect Theory presents several characteristics that are interesting to us and are explained below.

Following the seminal work by Kahneman and Tversky (1992), given a gamble that promises outcome x_i with probability p_i, people assign it a value of $\sum_i p_i \pi_i [w(p)]v(x_i)$. In this expression, π is a probability weighting function, p is the
cumulative probability, \(w(p) \) is the decision weight function which takes the form \(w^+ \) for the gains and \(w^- \) for the losses, and \(v \) is the value function.

This formulation reveals a fourfold pattern of risk attitudes that are modelled under Prospect Theory, say 1) reference dependence, 2) loss aversion, 3) diminishing sensitivity, and 4) probability weighting.

Firstly, utility is defined over gains and losses (instead of over final profits) with respect to a reference point. That is, subjects care about variations in wealth as deviations from the reference point, rather than changes in the absolute final or initial wealth, as Expected Utility does. It is sometimes unclear how to precisely define the reference point, and Kahneman and Tsversky offer little guidance about it (Barberis 2013). In their 1979 publication, the authors emphasize the subjective and contextual nature of the reference point. Koszegui and Rabin (2006) propose using recent expectations about outcomes, but their proposal still requires more testing. Furthermore, their proposal contradicts the widely assumed reference points in Prospect Theory’s such as the status quo or the individual’s current assets (Bocquêho, Jacquet and Reynaud 2014) which were stated in Kahneman and Tsversky (1979).

Secondly, the value function \(v \) has a kink at the origin, indicating a greater sensibility to losses than to gains, which is typically known as loss aversion. The origin is not necessarily zero, it is what divides gains from losses relative to the reference point. This implies that the value function decreases more rapidly as losses increase, than increase when gains are higher.

Thirdly, the value function \(v \) is concave in the domain of gains and convex in the domain of losses. This is known as diminishing sensitivity. This determines an S-shaped utility function, as it is observed in figure 1 in the left panel. The concavity (convexity) over gains (losses) captures the experimental findings that people tend to be risk averse (risk-seeking) over moderate probability gains (over losses).
Finally, people weight outcomes by decision weights \(\pi_i \) or probability transformations, which are computed using a weighting function \(w(p) \). It is a non-linear probability transformation where small probabilities are given a larger weight, i.e., \(\pi(p) > p \) and almost all other events are underweighted, so that \(\pi(p) < p \). This is also based on experiments and it is depicted in the right panel of figure 1.

Figure 1. Value function proposed by Kahneman and Tsversky (1979) and the probability weighting function.

![Value function and probability weighting function diagram](image)

The functional forms and the value of the parameters used in this paper, were taken from Kahneman & Tsversky (1992). In particular, the value function is:

\[
v(x) = \begin{cases} x^\alpha & x \geq 0 \\ -\lambda(-x)^\alpha & x < 0 \end{cases}
\]

(2.1)

where \(\lambda \) is the coefficient of loss aversion and \(\alpha \) determines the curvature of the value function for gains and losses. If \(\lambda \) is greater than 1, individuals are more sensitive to losses than gains because, given a loss, this parameter induces the value function to yield an even lower value. Parameter \(\alpha \) is between 0 and 1; if \(\alpha \) is less than 1, there exists risk aversion over gains and risk seeking over losses. The extreme case of \(\alpha = 1 \) collapses to risk neutrality or linear utility.

The decision weighting functions are specified as:

\[
w^-(p) = \frac{p^\delta}{(p^\delta + (1 - p)^\delta)^{1/\delta}}
\]

(2.2)
\[w^+(p) = \frac{p^\gamma}{(p^\gamma + (1-p)^\gamma)^{1/\gamma}} \]

where, \(p \) is the cumulative probability, and \(\delta \) and \(\gamma \) are the probability weights. If \(\delta \) and \(\gamma \) are both set to 1, the weighting probability effect disappears.

Sensitivity analysis can be conducted, for example, by setting \(\lambda = 1 \) to evaluate the effect of loss aversion, or \(\gamma = \delta = 1 \) to see the effect of using the standard probabilities instead of the probability weights. Also, as mentioned above, setting \(a = 1 \) allows to compare the effect of using a linear value function. It has to be noted that Prospect Theory has Expected Utility as a particular case if the reference point equals 0 and \(a = \lambda = \gamma = \delta = 1 \).

In addition, gains are ranked from the lowest to the highest and the losses from the lowest loss to the highest loss. The cumulative probability \(p \) of any outcome \(x_i \) is obtained as the probability that a gain is higher than or equal to \(x_i \). With \(m \) losses and \(n \) gains, the probability of obtaining a gain that is higher than or equal to the lowest possible gain is: \(\frac{n}{m+n} \). Similarly, the probability of obtaining a loss that is higher or equal to the lowest loss is: \(\frac{m}{m+n} \). In the same way, the probability of obtaining a gain that is higher or equal to the second smaller gain is: \(\frac{(n-1)}{(m+n)} \). Therefore, the decision weights given to the smallest gain is: \(\pi = w^+ \left[\frac{n}{m+n} \right] - w^+ \left[\frac{(n-1)}{(m+n)} \right] \). The decision weights given to the second smallest gain is: \(\pi = w^+ \left[\frac{(n-1)}{(m+n)} \right] - w^+ \left[\frac{(n-2)}{(m+n)} \right] \).

For the case of losses, the decision weight for the smallest loss is: \(\pi = w^- \left[\frac{m}{m+n} \right] - w^- \left[\frac{(m-1)}{(m+n)} \right] \). Thus, under this formulation, the decision weight of any outcome equals the incremental value of the weighting function at each possible outcome.

In addition, Prospect Theory implies a transformation on the shape of the value function induced by the probability weighting functions. Therefore, there are two sources of risk aversion. One is given by the curvature of the utility function (parameter \(a \in [0,1] \)) and the other is given by the parameters of the probability
weighting function (γ and δ). This is because for a given curvature of the value function, risk aversion is strengthened by overweighting small probabilities and underweighting middle to large probabilities. In particular if γ and δ are:

1. $\in (0,1)$, then the weighting function $w(p)$ would have an inverted S-shape.
 This means that people overweight small probabilities (concave section) and underweight large ones (convex section).
2. Equal to 1, then $w(p) = p$ which implies linear probabilities and we are in the Expected Utility framework.
3. Greater than 1, then $w(p)$ will have an S-shape, with concavity for large probabilities and convexity for smaller and middle ones.

Finally, Kahneman & Tversky, using experimental evidence, obtain the following parameter values that we adopt in this application: $\alpha = 0.88$, $\lambda = 2.25$, $\gamma = 0.61$, and $\delta = 0.69$.

We turn to the specifics of our application in supplemented irrigation. The type of problems we are dealing with are better presented when crop rotations (or sequences of crops) are considered, both for irrigated and rain-fed systems, instead of considering the evaluation of individual crops. This has to do with the inter-annual complementarities between the crops (agronomic, economic and environmental) and also because it is the way that farmers typically plan their crops. Given a crop rotation, we compute the profits of each irrigated crop, add them up to obtain the profit of the whole rotation, and then plug it in the utility function. The utility of the rain-fed rotation is computed analogously but considering a different crop mix in the rotation, different yields, volatilities, and production costs. The mentioned complementarities are taken into account directly in the yields, in their volatilities, and their production costs.
For both the rain-fed and irrigated systems, we consider a sequence of K crops, indexed by the subscript i. We generate the stochastic profit of the crop i in the rotation as $x_i = \bar{P}_i \bar{y}_i - P_R R_i - P_X X_i$. The stochasticity comes from the prices \bar{P}_i and the production per hectare \bar{y}_i, which are unknown at the moment production decisions are taken. Yield of the i^{th} crop behaves as a density function $\bar{y}_i = f(y_i)$, which takes values in the closed interval $[a, b]$, where a and b represent, respectively, the lowest and highest possible yield. Expected prices of crops behave according to a density function $h(P_i)$ with $P_i \in [0, +\infty)$. The price of the water for irrigation (in dollars per millimetre1 per hectare) is P_R, and R_i is the quantity of water for irrigation applied to crop i (in millimetres per hectare). This function is also valid for the rain-fed case, by simply taking $R_i = 0$. X_i and P_X are the quantities and prices of the remaining inputs of the production process, both deterministic.

A risk averse individual, who receives an uncertain stream of profits, is willing to pay for an insurance that allows him to avoid that “risky bet”, but which gives him the same level of utility than the risky bet. This value is called the Risk Premium (RP) and it is defined as the monetary amount that the individual is willing to pay to receive a certain amount of money (i.e., a quantity free of risk), but which leaves him with the same utility level as the utility that the uncertain profits would report him.

We compare the value of the utility function derived from the irrigated production with that of the rain-fed system. As the first one is higher on average and also less volatile, the utility will always be higher than the utility of the rain-fed system. In fact, one portion of this difference is due to the profits that are higher on average, and the remaining is due to the lower volatility. One key contribution of our analysis is to quantify each portion in monetary terms so as to be directly interpretable by the individual.

1 Note that 25.4 millimetres of rain are equivalent to 1 inch of rain.
One avenue to implement this quantification is to rely on the *Certainty Equivalent* (CE). It is defined as the certain amount of money (i.e., without uncertainty and in US dollars per hectare) which gives the individual the same utility level than the utility that comes from facing the risky stream of profits. It is calculated as the expected profits minus the risk premium: $CE = E(x) - RP$. As it depends negatively on the risk aversion, the more risk averse the individual is, everything else equal, the RP that he is willing to pay is higher, and thus the CE is lower. One of the advantages of the CE is that it is expressed in the same monetary units as the profits.

To compute the *certainty equivalent* we use the value function in equation (2.2) (Babcock 2015). When the value function equals v_1, certainty equivalent equals CE_1, using the value function over gains. Similarly, when total value equals v_2, certainty equivalent equals CE_2, using the value function over losses (see figure 2).

Figure 2. Value Function (equation 2.2) and certainty equivalent

![Value Function and Certainty Equivalent](image)

Source: Based on Babcock (2015)

In the case of a risk neutral individual, the risk premium is equal to zero, so the utility that profits report is the same as the expected value of the profits, without a risk
penalty. For agents who dislike risk, when they face a volatile stream of profits, their risk premium is higher than zero, so they will be willing to receive an amount, lower than the average of the profits, to get rid of the uncertainty but keeping the same level of utility.

In this paper, we expect to break down the additional value the farmer receives for using an irrigated rotation with respect to a rain-fed one. In particular, we want to compute the portion of that value corresponding to profits that are higher on average and the one corresponding to the profits being of lower volatility.

In the first place, we calculate the certainty equivalent for both the rotation with irrigation \((CE_{wi}) \) and the rain-fed rotation \((CE_{rf}) \). Then, we present the total additional value due to irrigation in percentage change with respect to the situation of the rain-fed rotation, that is, \(\frac{CE_{wi}}{CE_{rf}} - 1 \).

Secondly, the total additional value has two components. The value corresponding to profits that are higher on average is computed as the certainty equivalent of an individual who faces a stream of profits whose average is equal to that of a farmer who irrigates but with a coefficient of variation equal to that of the farmer with rain-fed systems. We denote this certainty equivalent as \(CE_{wi2} \). The ratio \(\frac{CE_{wi2}}{CE_{rf}} - 1 \) represents the additional value for the farmer that irrigates exclusively attributable to the higher average profits. It is important to highlight that this is precisely the value considered by the net present value and the internal rate of return approaches. In this result, the relative lower volatility does not play any role.

Finally, the difference between the total additional value and the value for profits higher on average is the value to the farmer attributable to the lower volatility of profits, which reduces to \(\frac{(CE_{wi} - CE_{wi2})}{CE_{rf}} \).

3. Data
We conduct the evaluation of the value of irrigation technology, in the context of representative production systems, applied at the farm level, and for crops appropriate to use with supplemented irrigation. We construct a series of scenarios that are representative of typical conditions in Uruguay. We consider two types of soil aptitudes (medium and high) because they are relevant to determine the type of crop rotation that the farmer can apply. Conditional on the soil aptitude, we select a set of rotations that are consistent with the best management practices of agricultural production, in particular, with the existing regulations of soil use and management implemented by the environmental and agricultural authorities. Soils in Uruguay are classified according to a productivity index (the CONEAT index) and we assume that a soil with high aptitude has a CONEAT index greater than 160. The geographical location also determines the type of rotation because a high distance to the port may deter the farmer from producing export-oriented crops (such as soybeans). Farms within 150 kilometres from the Nueva Palmira Port (Uruguay) are considered to be close to the port. Then, irrigation technology is both used in farms with crops as the main (and possible the only) source of revenue, but also in farms where livestock production is completely integrated to the production of crops. Each type of farm will optimally select a different crop rotation. Finally, prices are set at the expected values in 2016 for 2017 which are considered as medium levelled prices.2

Table 1 shows the options we have in order to build the scenarios of agricultural production, and table 2 shows the scenarios constructed in this analysis. Other interesting scenarios are not presented here for reasons of space but are available from the authors upon request.

Table 1. Scenarios of agricultural production in Uruguay, by soil aptitude, geographical location, price, and main production activity of the farm.

<table>
<thead>
<tr>
<th>Production</th>
<th>Soil aptitude</th>
<th>Geographical</th>
<th>Prices</th>
<th>Main</th>
</tr>
</thead>
</table>

2 Low prices are equivalent to the minimum registered around the years 2015-2016, and high prices are those observed in the 2016 harvest season. See table A1 in the Appendix for details.
The criteria to determine which rotation to assign, given the combination of factors (environment, transportation costs, soil aptitude for agriculture, main production activity of the farm) is determined in general terms, by selecting crops whose transportation costs are low. Also, when soil aptitude is medium, sorghum is preferred to corn as its yields are more stable and has a lower probability of producing patches with ungrown plants$ ^3$; however, in high aptitude soils, corn is preferred. When the distance to the port increases, the proportion of wheat in the rotations is reduced because it is a crop with the lowest relative price making the cost of transportation a relatively high portion of the total cost per ton. In the results section we present each selected scenario and explain the rotation attributed to each of them.

Table 2. Irrigated and non-irrigated crop rotations, according to the different scenarios of: soil aptitude, distance to the port, and production activity.

<table>
<thead>
<tr>
<th>Geographical location</th>
<th>Main production activity</th>
<th>High soil aptitude</th>
<th>Medium soil aptitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotations with irrigation</td>
<td>Close to the port</td>
<td>Crops only</td>
<td>CCS1-CCM$ ^1$</td>
</tr>
<tr>
<td></td>
<td>Far from the port</td>
<td>Crops only</td>
<td>CCS1-WS2-CCM$ ^2$</td>
</tr>
<tr>
<td>Rotations without irrigation (rain-fed)</td>
<td>Close to the port</td>
<td>Crops only</td>
<td>CCS1-WS2-CCM$ ^1$</td>
</tr>
<tr>
<td></td>
<td>Far from the port</td>
<td>Crops only</td>
<td>CCS1-WS$ ^2$</td>
</tr>
</tbody>
</table>

Note 1: CC – Cover Crop; S1 – Soybean as 1st crop; S2 – Soybean as 2nd crop; M1 – Corn as 1st crop; M2 – Corn as 2nd crop; W – Wheat; SG1 – Sorghum as 1st crop.

Note 2: the scenario number is denoted with the superscript of each rotation.

$ ^3 $ It is relevant to consider that in medium soil aptitude conditions, the plant density of sorghum between 200 and 400 thousand plants per hectare is determinant for achieving good yields as it better competes with weeds due to that higher density. In addition, sorghum defines its yield in a period of approximately 60 days, as opposed to corn which has a lower density (50 thousand plants per hectare) and which defines its yield in a shorter period (20 days); this makes yields more volatile between years.
The density functions of yields and prices, given by the functions \(\tilde{y} = f(y) \) and \(h(P) \), are generated using Monte Carlo simulations. The sources and necessary data to calibrate the parameters of these functions are explained below.

The non-irrigated yield density function of crop \(i \), \(\tilde{y}_i = f(y_i) \), arises from firstly detrending a time-series of annual observed non-irrigated yields (DIEA-MGAP). The new series is the deviation from the trend. Secondly, we multiply the series by the average of the observed yields in the last four years. Then, we fit a non-parametric density function\(^4\) to that series (DiNardo and Tobias 2001), which allows us to have a probabilistic representation of the behaviour of the rain-fed yields for crop \(i \). Next, we obtain by Monte Carlo simulation 5000 random draws from such density function, building the random yield series faced by the farmer, and that is used to compute the non-irrigated profits of crop \(i \). According to the rain-fed rotation, the appropriate crop yields are selected, the profits of the rotation are computed, and later plugged into the utility function.

The simulated crops are soybean as first and second crop (S1, S2), corn as first and second crop (M1, M2), sorghum as first crop (SG1) and wheat (W)\(^5\). Figure 3 illustrates the procedure for the particular case of soybean as first crop. The other crops are performed in a similar fashion. Panel 1 shows the observed historical time-series of yields from 1974 through 2014, and a cubic trend. Panel 2 is the detrended observed historical yields. Panel 3 illustrates the histogram of the detrended yields centered around the mean of the last four years. Panel 4 shows the Monte Carlo

\(^4\) We tried parametric methods, for example, fitting a Beta\((p,q)\) distribution where we use the observed series to estimate its parameters \(p \) and \(q \). However, the non-parametric methods proved to provide a better adjustment to the detrended yields, especially in the tails of the distributions.

\(^5\) In the simulation, we also generated results for corn as second crop (M2) and sorghum as first and second crop (SG1, SG2); while not used in the scenarios presented here, they are available and will be used for the analysis of additional scenarios.
simulation of 5000 random draws of the estimated non-parametric density function of yields.

Figure 3. Steps to generate random draws of a non-parametric distribution of soybean yields.

Finally, in order to obtain the yield series that would be ultimately used in each scenario, we perform an adjustment in the support of the density function by purposely changing the mean and width of the support so that it yields mean, standard deviation and coefficient of variation, are comparable to those registered in the scenario we seek to represent. We are required to do so because, although we generate a random series of yields for non-irrigated soybean as a first crop, historical data is at the aggregate country-level, so this transformation makes the yields to behave consistently with the soil aptitude of the scenario and the crops preceding and following in the rotation. The information of the mean, standard deviation, minimum and maximum yields for each scenario come from observed yields in commercial
farms and were gathered by the authors (table 3). Note that, for instance in figure 3, the histogram of the detrended observed series is centered around a different average than the non-parametric estimation; this occurs since the support of the latter was transformed to represent the case of no-irrigation in high aptitude.

Table 3. Average yields, standard deviation and variation coefficient.

<table>
<thead>
<tr>
<th>Soil Aptitude</th>
<th>Descriptive Statistic</th>
<th>S1</th>
<th>S2</th>
<th>M1</th>
<th>M2</th>
<th>SG1</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigated</td>
<td>Mean kg/ha</td>
<td>4056</td>
<td>3879</td>
<td>10647</td>
<td>9518</td>
<td>3941</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard dev.</td>
<td>197</td>
<td>291</td>
<td>894</td>
<td>1344</td>
<td>801</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CV %</td>
<td>5%</td>
<td>8%</td>
<td>8%</td>
<td>14%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Irrigated</td>
<td>Mean kg/ha</td>
<td>3781</td>
<td>3211</td>
<td>9102</td>
<td></td>
<td>3677</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard dev.</td>
<td>224</td>
<td>311</td>
<td>1087</td>
<td></td>
<td>761</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CV %</td>
<td>6%</td>
<td>10%</td>
<td>12%</td>
<td></td>
<td>21%</td>
<td></td>
</tr>
<tr>
<td>Rain-fed</td>
<td>Mean kg/ha</td>
<td>2654</td>
<td>2315</td>
<td>5671</td>
<td>5123</td>
<td>3941</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard dev.</td>
<td>638</td>
<td>681</td>
<td>1327</td>
<td>611</td>
<td>801</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CV %</td>
<td>24%</td>
<td>29%</td>
<td>23%</td>
<td>12%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Rain-fed</td>
<td>Mean kg/ha</td>
<td>2361</td>
<td>1924</td>
<td></td>
<td>4512</td>
<td>3319</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard dev.</td>
<td>541</td>
<td>732</td>
<td>815</td>
<td>844</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CV %</td>
<td>23%</td>
<td>38%</td>
<td>18%</td>
<td>25%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The random generation of irrigated yields is more challenging because we do not observe long enough historical time-series of irrigated crops. However, we do observe several commercial farms, both crop only and crop-livestock oriented operations, applying irrigation in different geographical locations of the country and using different crop rotations. Furthermore, these farms match the scenarios we seek to represent in this study and cover a relatively large area over several years. For this reason, we use the minimum, maximum, mean, and the dispersion around the mean of these series of irrigated and non-irrigated crops to calibrate our scenarios. As these series are not sufficiently long so as to fit parametric or non-parametric densities, we
take the draws of the rain-fed crop and then proceed to transform the support of the
distribution so that it matches the observed mean, standard deviation and coefficient
of variation of the corresponding irrigated crop.

Table 3 shows the average yields, standard deviation and coefficient of variation used
in the calibration. As we mentioned above, these data come from rain-fed and
irrigated systems in commercial farms gathered by the authors, which cover more
than 350 thousand hectares during 10 years of rain-fed agricultural systems and more
than 20 thousand hectares of crops during 8 years with irrigation.

The probability function \(h(P_t) \), which depicts the unobserved expected random prices
of crop \(i \) at harvest time, is assumed that behave according to a lognormal distribution.
As the daily percentage change of the commodity prices can be approximated by a
Normal distribution, the variable in levels is Lognormal (Hull 2009, p. 271). Based on
data of historical time-series of the crop prices of interest taken from Index Mundi and
the “Cámara Mercantil de Productos del País” (CMPP) in Uruguay, we compute the
implicit volatility of such prices, which is one of the parameters of the lognormal
distribution. The other parameter, the mean of each distribution, is the mean price for
the corresponding scenario (medium in this case). Table 4 shows medium price levels
of the selected crops.\(^6\)

Random prices are generated correlated with yields of the respective crops, and we
use the Johnson and Tenenbein (1981) method to impose correlation between the
random series.

Finally, data on costs of crops are obtained by the authors and correspond to those
observed in commercial farms. We generate a vector of costs for each crop and
scenario-specific, both for irrigated and non-irrigated systems, which include input

\(^6\) Scenarios generated with low and high prices are available from the authors.
costs, farm hired labour, irrigation costs, post-harvest costs, cost of water, and the recovery value of the irrigation equipment in a 12 years lifetime. Table 4 shows a summary of costs per crop for the case of high soil aptitude and medium prices.\footnote{A more detailed breakdown of the costs of all crops, a description of them, as well as the values for other scenarios (medium soil aptitude, far from the port, and for low and high prices) is available from the authors.}

Table 4. Costs and prices per crop, for irrigated and rain-fed systems.

<table>
<thead>
<tr>
<th>Soil Aptitude</th>
<th>Statistic</th>
<th>S1</th>
<th>S2</th>
<th>M1</th>
<th>SG1</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigated</td>
<td>Total Cost</td>
<td>590</td>
<td>438</td>
<td>897</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td></td>
<td>Recovery cost irrigation equip.</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Price</td>
<td>361</td>
<td>361</td>
<td>162</td>
<td>141</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Transport cost</td>
<td>89</td>
<td>85</td>
<td>234</td>
<td>0</td>
<td>87</td>
</tr>
<tr>
<td>Rain-fed</td>
<td>Total Cost</td>
<td>446</td>
<td>318</td>
<td>600</td>
<td>382</td>
<td>433</td>
</tr>
<tr>
<td></td>
<td>Price</td>
<td>361</td>
<td>361</td>
<td>162</td>
<td>141</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Transport cost</td>
<td>58</td>
<td>51</td>
<td>125</td>
<td>46</td>
<td>87</td>
</tr>
</tbody>
</table>

4. Results and discussion

Firstly, we present the results for the simulated scenario 1, consisting of a crop only operation, close to the port (low transportation costs), in a soil of high agricultural aptitude, and facing medium price levels. The results of the other scenarios are explained below, and although they are presented with less level of detail, they serve as a sensitivity analysis of our results. For each scenario we compare the situation of irrigated crops versus rain-fed crops.

Figure 4. Probability functions of the profits with and without irrigation, for the scenario 1 simulated.
The probability distributions of the profits with and without irrigation, obtained from the randomly generated yields and crop prices, using Monte Carlo simulations, are characterized by the properties exposed in the previous section, i.e., the profits with irrigation have a higher average and a lower dispersion than the profits without irrigation (see figure 4). In particular, the density function of the profits in the irrigated rotation has a coefficient of variation equal to 0.36 versus the 0.52 of the rain-fed rotation. Visually, the lower variability is perceived by noting that for the same interval of current U$S/ha in both panels, the density function of the irrigated rotation is more peaked relative to that of the rain-fed, and is centred on a higher mean. These profits are used in the utility function to compute certainty equivalents.

Results are presented in the following way. On the one hand, the total additional value for the farmer who uses irrigation versus the one not using it, is computed as the ratio of their certainty equivalents \(\frac{CE_{wi}}{CE_{fr}} - 1 \), therefore, it is expressed in percentage terms. Then, we break this percentage down into the utility given to the farmer due to the higher mean profits \(\frac{CE_{wi2}}{CE_{fr2}} - 1 \), also expressed in percentage terms, and the one
corresponding to the *lower volatility of profits*, which is the difference between these percentages; that is \(\frac{(CE_{w1} - CE_{w2})}{CE_{rf}} \).

Table 5 shows both results for *Scenario 1* (crop only, high soil aptitude, and close to the port) for different values of the parameters. The rotation with irrigation encompasses 2 years, CCS1-CCM1, this is: cover crop and soybean as first crop in the first year, and cover crop and corn as first crop in the second. In the rain-fed system, the rotation comprises 3 years, CCS1-TS2-CCM1, with cover crop and soybean as first crop in the first year, wheat and soybean as a second crop in the second year, and finally in the third year, cover crop plus corn as a first crop.

For an individual that is risk neutral (i.e. linear value function, \(a = \lambda = \gamma = \delta = 1 \)), we found that the use of supplemented irrigation in his rotation reports a certainty equivalent 86% greater than the one of the rain-fed situation. This can be interpreted in the following way: the use of irrigation reports a value to the farmer 86% higher than not using this technology. In this situation, the whole difference (86%) corresponds to the average profits being higher with irrigation; that is, risk neutral individuals do not give value to facing profits with a lower volatility. This is reported in the second column of table 5.

Individuals will value the reduction in volatility of the profits with irrigation, as long as they are risk averse. Therefore, we start by setting the parameters of the cumulative prospect theory utility function as the ones empirically found by Kahneman and Tversky (which are \(a = 0.88, \lambda = 2.25, \gamma = 0.61, \) and \(\delta = 0.69 \)). This does not only imply introducing risk aversion through parameter \(a \), but also loss aversion, weighting probabilities, and a reference point that determines perceived gains and losses. In particular, the reference point is set to be equal to 20% of the expected profits. With this set of parameters, the total value attributed to the use of irrigation is 130% relative to the production of rain-fed crops, due to both higher mean of profits and
lower volatility. This is a consequence of the certainty equivalent, \(CE = E(x) - RP \), being higher in the irrigated case not only because the expected profits \(E(x) \) are higher but also because the risk premium (RP) is lower (the premium the irrigating farmer is willing to pay to avoid the risk is lower, because the risk or volatility is lower). Furthermore, this total additional value is composed by 75% due to profits that are higher on average and a 25% because these profits have lower volatility. In conclusion, the value attributed to lower volatility is relatively significant, considering in addition that this is a value rarely quantified, and only appreciated qualitatively.

In order to analyze the sensibility of the results to a different combination of the utility function parameters, we evaluate a situation where farmers only have loss aversion (\(\lambda = 2.25 \)). As column 4 of table 5 shows, the loss aversion is the perception of the agent that losses are given a higher negative value, relative to a gain of the same absolute value, which is given a relatively lower positive value. In this case, we find that the total additional value is composed by an 80% attributed to getting profits that are higher on average and the remaining 20% due to the profits having lower volatility.

Another combination of the parameters is one where we remove the effect of the probability weights (\(\delta = \gamma = 1 \)), but leaving both risk and loss aversion. In this case, the value because of the lower volatility is 32% of the total additional value arising from using a rotation under irrigation (see column 5 of table 5).

The results presented here show that when individuals are risk averse, regardless of the combination of the other parameters of the utility function, the value attributed to the lower volatility is considerable and does not present significant changes from one situation to another, ranging between 20 to 32%.

Table 5. Value attributed to the use of irrigation with respect to rain-fed systems, according to different values of the parameters.

Scenario 1: crop only - high soil aptitude - close to the port
Next, we present the other two analyzed scenarios, comprising different configurations of production systems due to geographical locations, soil aptitude, and main production orientation of the operation. These are presented in Table 6.8

We run a Scenario 2 consisting of a crop only production system, in a high soil aptitude, but located far from the port. The rotation that is suited for these characteristics and under irrigation consists of 3 years and incorporates a winter crop instead of winter cover crops as the scenario 1. In particular, CCS1-WS2-CCM1, a cover crop in the winter followed by soybeans as first crop, winter wheat and corn as a second crop in the second year, and a cover crop plus corn as first crop in the third year. The rain-fed rotation lasts 2 years, CCS1-WS2, that is, a cover crop plus soybean as first crop in the first year, and in the second year a winter wheat followed by soybeans as second crop. In this case, the certainty equivalent of the risk averse farmer that irrigates is between 60 to 73% higher relative to the one that follows a rain-fed system. This total additional value is such that between 11 to 25%
corresponds to the value generated because the profits with irrigation are less volatile, and the remaining 89 to 75% is due to the higher profits on average.

Table 6. Value attributed to the use of irrigation with respect to rain-fed systems, according to different values of the parameters.

<table>
<thead>
<tr>
<th>Parameter values</th>
<th>Linear value function (risk neutral)</th>
<th>Kahneman & Tversky (1992)</th>
<th>Loss averse only</th>
<th>No weighting probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$a = 1.00$</td>
<td>$a = 0.88$</td>
<td>$a = 1.00$</td>
<td>$a = 0.88$</td>
</tr>
<tr>
<td></td>
<td>$\lambda = 1.00$</td>
<td>$\lambda = 2.25$</td>
<td>$\lambda = 2.25$</td>
<td>$\lambda = 2.25$</td>
</tr>
<tr>
<td></td>
<td>$\gamma = 1.00$</td>
<td>$\gamma = 0.61$</td>
<td>$\gamma = 1.00$</td>
<td>$\gamma = 1.00$</td>
</tr>
<tr>
<td></td>
<td>$\delta = 1.00$</td>
<td>$\delta = 0.69$</td>
<td>$\delta = 1.00$</td>
<td>$\delta = 1.00$</td>
</tr>
</tbody>
</table>

Scenario 2: crop only – high soil aptitude – far from the port

<table>
<thead>
<tr>
<th></th>
<th>Total additional value</th>
<th>Value for higher mean</th>
<th>Value for lower volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.51</td>
<td>0.51</td>
<td>~0</td>
</tr>
<tr>
<td>mean/total</td>
<td>100%</td>
<td>87%</td>
<td>~0%</td>
</tr>
<tr>
<td>volat/total</td>
<td>~0%</td>
<td>12%</td>
<td>11%</td>
</tr>
</tbody>
</table>

Scenario 3: crop only – medium soil aptitude – close to the port

<table>
<thead>
<tr>
<th></th>
<th>Total additional value</th>
<th>Value for higher mean</th>
<th>Value for lower volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.53</td>
<td>0.53</td>
<td>~0</td>
</tr>
<tr>
<td>mean/total</td>
<td>100%</td>
<td>45%</td>
<td>~0%</td>
</tr>
<tr>
<td>volat/total</td>
<td>55%</td>
<td>65%</td>
<td>67%</td>
</tr>
</tbody>
</table>

In **Scenario 3** we turn to a medium soil aptitude, with an agricultural system that is crop only, but its geographical location is close to the port. The rotation with irrigation also takes 3 years, CCS1-WS2-CCM1, so is the same as the scenario 2. The rain-fed rotation lasts 2 years, CCS1-WS2, and also is the same as that of the scenario 2. Results of this scenario are qualitatively similar to and thus consistent with those obtained in scenarios 1 and 2. In particular, the certainty equivalent of the irrigating systems is between 57 to 64% higher than those who follow a rain-fed system. The portion of the total additional value that corresponds to the lower volatility is as high
as 55 to 67%, implying that the value given to the more stable profits is not only significant but also, it is even higher than that given by the higher mean of profits.

In conclusion, if we consider the results of the three scenarios proposed and the combination of parameters of the utility function, we find that the results are qualitatively similar and do not present too much variation between them, or in other words, in all cases, there is a relatively high value that the farmer assigns to the lower volatility of profits obtained due to the use of irrigation, regardless of the production orientation of the operation, soil aptitude, distance to the port, and attitudes toward risk. As expected, the proportion of this value in the total additional value increases as the individual is more risk averse. The higher risk aversion motivates the individual to increase the risk premium he is willing to pay to avoid the uncertainty inherent to the production activity, but that increment is even higher for the rain-fed individual which has the higher risk, making his or her certainty equivalent to decrease sharply.

Importantly, and as it was stated before, these scenarios represent typical production schemes found in the agricultural sector in Uruguay, so the results may be useful for promoting the adoption of this technology.

5. Conclusions

The introduction of irrigation produces a significant increase in crop yields as well as a noticeable reduction in their annual variability. The combination of these two factors turns the implementation of irrigation into an attractive practice, with a direct impact on the economic profitability of crops (positive in levels and negative in dispersion). This effect is even more evident when irrigation is implemented on rain-fed summer crops, to supplement rainfall.

The typical analysis involving the economics of irrigation is from the financial point of view; that is, to what extent the higher revenues pay for the investment and
additional costs. However, these methodologies fail to consider the benefits arising from the reduction in income variability.

Our study focuses on monetarily quantifying the benefit arising from less volatile yields relative to those of rain-fed summer crops, a value that is usually ignored by the farmer. Although the value of the higher average profits is easy to interpret, as they can be associated with the tangible benefit (even in monetary units), it is more difficult to conceptually grasp the value from the lower uncertainty. This is translated, for instance, into a better general environment for doing business, taking risky decisions within a more certain environment, prompting investment and increasing production, although it does not necessarily imply directly observing a higher flow of funds.

It is generally accepted that there economic agents positively value more stable incomes, and it is the subject of a wide literature in economics and finance. When economic agents, such as consumers, farmers, or investors, are faced with two uncertain bets, with the same average but one with more uncertainty than the other, they will prefer the more secure. Behind this argument is the assumption that individuals dislike risk, or in other words, are risk averse. In particular, if a farmer has the alternative to generate a flow of profits with a given volatility (rain-fed production) and another one with a lower volatility (irrigated production), he would prefer the latter even in the case they would have the same average value. Thus, farmers and economic agents in general, not only value the higher profits on average, but also value their lower volatility.

We propose a Prospect Theory approach that simultaneously incorporates both effects. More precisely, we compare on the one hand, a representative farmer who maximizes the utility of a stream of uncertain profits and uses supplemented irrigation technology, with on the other, everything else equal, a farmer employing a rain-fed
system. The comparison yields the overall value arising from both higher average and lower volatility. Then, we turn to decompose this value into the contribution of each source.

The agricultural economics literature has paid little attention to this type of evaluations, and the only studies accounting for both effects of irrigation are more than 25 years old. Also, and up to our knowledge, this is the first application of prospect theory in evaluations of the adoption of supplemented irrigation.

Prospect Theory features some key factors which tackle the main critics other treatments of decision-making under uncertainty (such as mean-variance analysis and expected utility) have. Experimental work has shown that people systematically violate behaviour depicted by these frameworks, having Kahneman and Tversky (1979) and Tversky and Kahneman (1992) as the main precursors. In particular, outcomes are modelled as gains and losses with respect to a reference point, and thus agents can be modelled as both risk averse and loss averse. Prospect Theory also incorporates the fact that agents tend to overestimate (underestimate) small (large) probabilities. We argue that accounting for loss aversion and probability weighting may drive results and induce a different design of effective and efficient policies, contracts, and decision schemes regarding irrigation.

A key concept for our work is the certainty equivalent, i.e. the certain amount of money an individual is willing to receive which reports him the same level of utility than an uncertain bet or lottery. To quantify the premium associated with the less volatile yields of the irrigating farmer, we proceed in two steps. First, we compute the certainty equivalent of the stochastic profit flow of a farmer applying supplemented irrigation to a crop rotation, using a cumulative prospect theory utility function (CE_{wi}). We compare it with that of a farmer that, everything else equal, does not use irrigation (CE_{rf}). As risk averse individuals negatively value the higher variability of
profits, the former will be higher. Their difference expressed in percentage terms
\(\frac{CE_{w1} - CE_{rf}}{CE_{rf}} \) provides us with the overall value from using irrigation (both from higher yields and lower volatility). In the second step, we decompose both effects. We compute the certainty equivalent of a stochastic flow of profits with the same average profit of the irrigating farmer but with the volatility of the farmer not applying irrigation (we denote it as \(CE_{w2} \)). The ratio \(\frac{CE_{w2}}{CE_{rf}} - 1 \) represents the additional value for the farmer that irrigates exclusively coming from the higher average profits. The difference between both results \(\frac{CE_{w1} - CE_{w2}}{CE_{rf}} \) is exactly how much a farmer values the lower volatility induced by the use of irrigation.

We show an application for summer crops in Uruguay, where the irrigated area increased 34% between 2000 and 2011 due to supplemented irrigation in summer crops. The stochastic nature of profits arises from two correlated sources: expected yields (both irrigated and non-irrigated) and expected output prices. Crop yields are modelled as probability density functions, computed by fitting non-parametric density functions to observed time-series of yields obtained from Uruguayan official agricultural statistics. Random prices are assumed to be lognormally distributed and calibrated using expected prices for each crop. Production and investment costs are taken from private agronomy advisers and from official extension services. Random deviates are drawn from each density function by Monte Carlo simulations (assuring that prices are correlated with crop yields) and then plugged into the utility function. Profits with and without irrigation are computed for selected crop rotations and not for individual crops, as it is the standard way of conceiving the crop production system.

We conduct sensitivity analyses by constructing scenarios of soil productivity levels, orientation of the farm (crop only and crops integrated to livestock production), and
distance to the port. Also, we explore the role of degrees of loss aversion, curvature of the value function, and probability weighting schemes.

Results are presented firstly for scenario 1, which comprises a crop only operation, in high soil aptitude, close to the port (low transportation costs), and facing medium crop price levels. Farmers with irrigation and with rain-fed systems use crop rotations that are typically observed in those types of soils and production systems. We find that for a risk neutral individual, the use of supplemented irrigation reports a certainty equivalent 86% higher than the one of the rain-fed situation. In this case, the whole difference (86%) corresponds to the average profits being higher with irrigation, because risk neutral individuals do not give value to facing profits with a lower volatility.

When individuals are risk averse, they give value to the reduction in volatility. We run different scenarios of risk aversion, including loss aversion only, no weighting probabilities, and the values that Kahneman and Tversky found empirically. In these cases, when we break down the total additional value and take it as the 100%, we find that, in all these scenarios, the value for lower volatility is around 25 to 32% whereas the value for higher average profits is between 68 to 80%.

For sensitivity analysis, we also run a scenario (scenario 2) consisting of a crop only system, in a high soil aptitude, but located far from the port. We find that the certainty equivalent of the risk averse farmer that irrigates is between 60 to 73% higher relative to the one employing a rain-fed system. This total additional value is such that between 11 to 25% corresponds to the value generated because profits are less volatile, and the remaining 89 to 75% is due to the higher profits on average.

Finally, in another scenario (scenario 3) with medium aptitude soils, with crop only production system, but geographically close to the port, we find that the value
attributed to lower volatility is between 57 to 64%, which implies that it is even higher than that from the higher average profits.

In conclusion, regardless of the location and particular characteristics of the farm, when individuals are risk averse, there exists a significant value that the farmer assigns to the lower variability of the yields with irrigation, which is additional to the one coming from higher average yields. As expected, the higher the risk aversion, the value of the lower volatility increases.

These scenarios represent typical production schemes found in the agricultural sector in Uruguay, so the results may be useful as an input to support private efforts and public policies promoting supplemented irrigation. Supplemented irrigation is conceived as a technology which generates resilient production systems, especially in the context of variability and climate change.

In further developments of this study, we extend our preliminary results by using other reference points, other combinations of utility parameters, and other production scenarios.

References

Appendix

Table A1. Level of prices of each crop for each scenario

<table>
<thead>
<tr>
<th>Level of prices</th>
<th>S1</th>
<th>S2</th>
<th>W</th>
<th>M1</th>
<th>M2</th>
<th>SG1</th>
<th>SG2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>361</td>
<td>361</td>
<td>166</td>
<td>162</td>
<td>162</td>
<td>145</td>
<td>141</td>
</tr>
<tr>
<td>High</td>
<td>410</td>
<td>410</td>
<td>195</td>
<td>181</td>
<td>446</td>
<td>170</td>
<td>217</td>
</tr>
<tr>
<td>Low</td>
<td>283</td>
<td>283</td>
<td>141</td>
<td>133</td>
<td>133</td>
<td>120</td>
<td>153</td>
</tr>
</tbody>
</table>

Note: CC – Cover Crop, S1 – Soybean as first crop, S2 – Soybean as second crop, M1 – Corn as first crop, M2 – Corn as second crop, W – Wheat, SG1 – Sorghum as first crop.